Watershed Advisory Committee

ROCKY RIVER | OCTOBER 8, 2021

Agenda

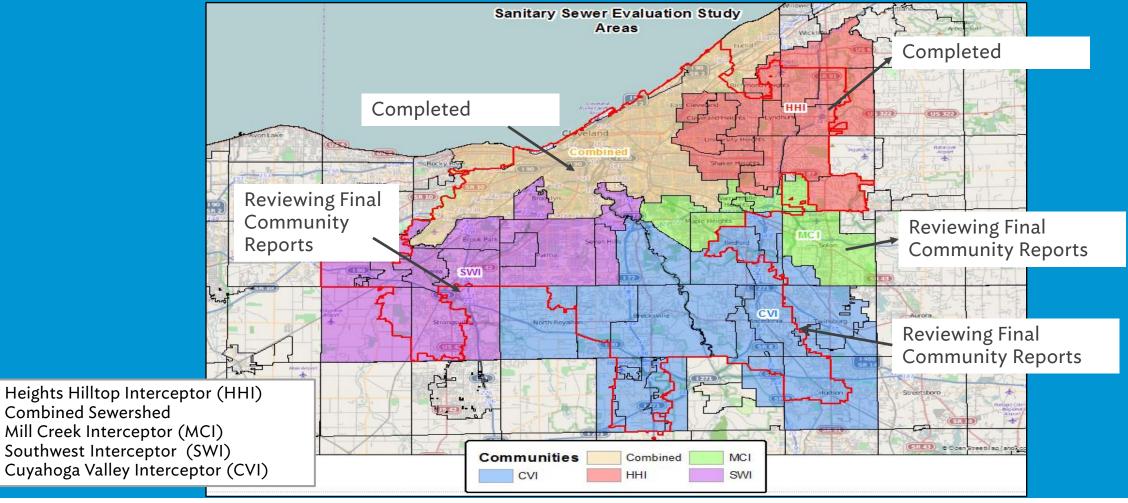
- Welcome, Introduction & Updates
- Plum Creek Fish Relocation Feature
- Strategic Support Update
- Master Planning Update
- Inspection and Maintenance Update
- Design & Construction Update
- Looking Ahead

Program Highlights

Frank Greenland, Director of Watershed Programs

Matt Scharver, Deputy Director of Watershed Programs

Community Cost-Share: 2021


CCS fund balance (8/31/21)
CCS funds available

\$32,489,369

\$22,478,882

Year	CCS Spent
2016	\$72,190
2017	\$2,626,418
2018	\$4,218,308
2019	\$9,178,445
2020	\$6,940,369
2021 (9/30/21)	\$7,937,863
Total	\$30,973,593

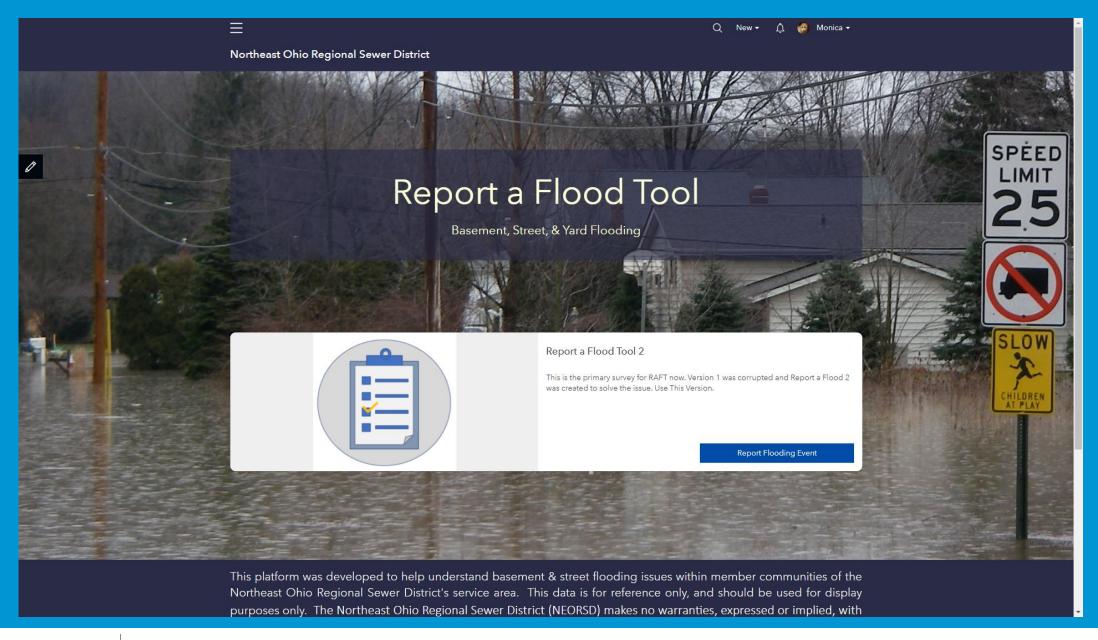
Local Sewer System Evaluation Studies (LSSES)

Stormwater Fee Credit Policy Manual Draft updates affecting commercial, industrial and HOA properties

1. Quantity - Peak Flow credits can be applied to impervious areas that cannot physically be conveyed to an SCM, provided that SCM accounts for these areas via over-detention.

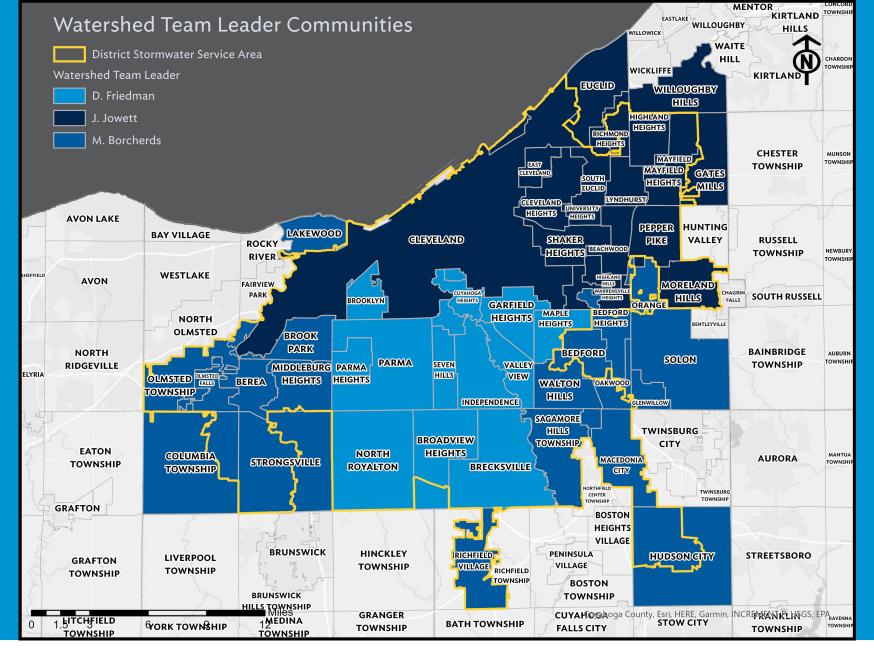
Stormwater Fee Credit Policy Manual Draft updates affecting commercial, industrial and HOA properties

2. Facilities identified within an MS4's current Stormwater Management Program, as part of a valid MS4 NPDES permit, may be eligible to receive a Stormwater Quality Credit of 25% (Example: parking lot adjacent to City Macedonia's rec center).



Stormwater Fee Credit Policy Manual Draft updates affecting commercial, industrial and HOA properties

- 3. Credit eligibility will require an applicant to at least have partial/shared maintenance responsibilities for an SCM.
- 4. An expedited credit application process for SCMs funded via the District's GIG Program
- 5. Credit renewal dates limited to May 1st thru December 31st to ensure required SCM inspections can be completed during favorable weather conditions.
 - Example: A new Quantity or Quality credit approved on February 17, 2022, will have an initial annual renewal date of May 1, 2023 (and every month of May thereafter).
- 6. Various administrative updates to provide additional clarification.

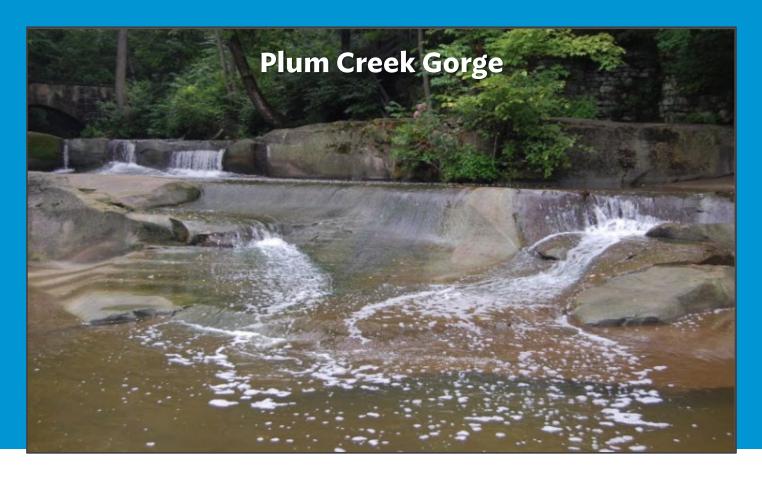


New mark, same message.

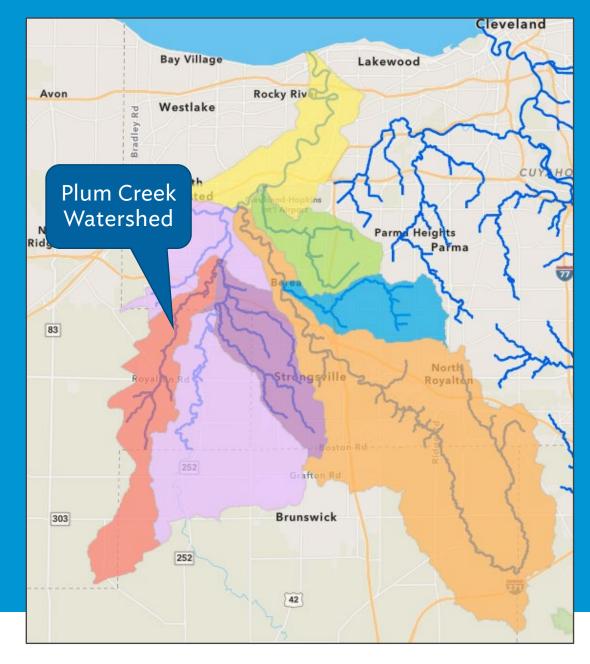
PLEASE NOTE OUR UPDATED LOGO FOR YOUR PROJECTS.

Northeast Ohio Regional Sewer District

Questions


FEATURE PRESENTATION Justin Telep

Plum Creek fish translocation to support biological attainment


Justin Telep
WQIS Environmental Compliance Inspector

Background

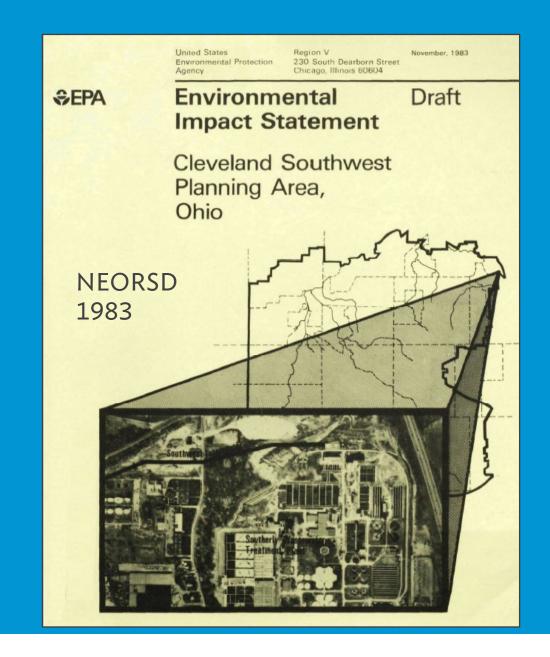
- Headwater stream tributary to the W. Branch of the Rocky River in Olmsted Falls and Columbia Township.
 - 3.6 miles long within NEORSD service area
- Watershed characteristics:
 - Drainage Area ~ 18 sq. mi.
 - 26.8% forested
 - 20.3% urban/developed land
 - 4.0% impervious surface

Source: StreamStats & National Land Cover Dataset, 2011

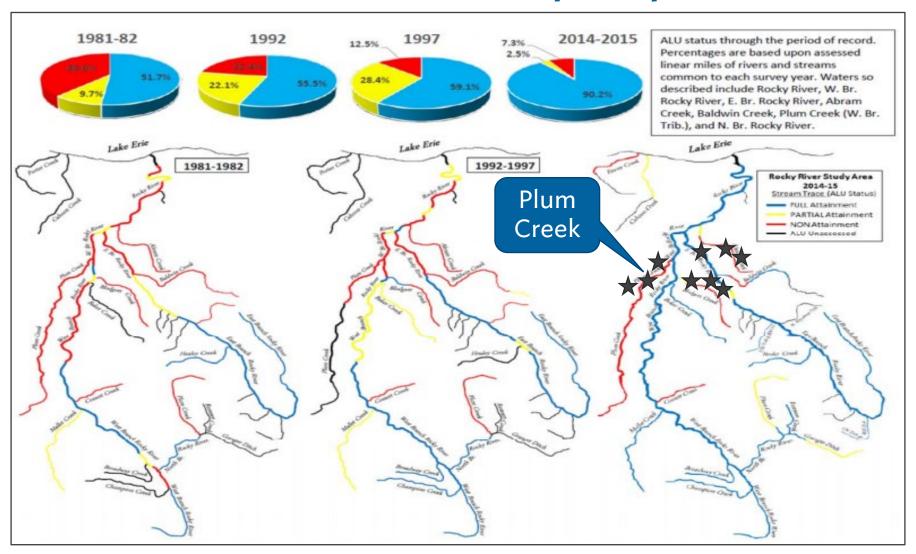
Background

- Ohio EPA Biocriteria framework:
 - Biological: Fish (IBI) and Macroinvertebrate (ICI)
 - Physical: QHEI
 - Chemical: Aquatic life use WQS
- Impaired since its first Ohio EPA bioassessment in 1981
 - Gross organic enrichment and poor chemical water quality (prior to 1990s)
 - Nutrient enrichment (early 2000s)
 - Natural sources (current)

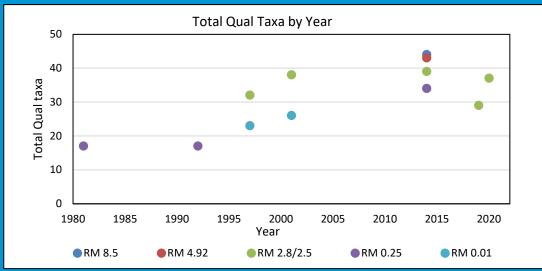
Year										
assessed/	River	TRI	ICI ^a	OHEI	Status	Causes	Sources	ALU WQS		
agency	Mile	IDI	101	QIILI	Status	Causes	Sources	Exceedances		
2020										
(NEORSD)	2.84	24*								
2020			28	69.25	NON					
(NEORSD)	2.84	<u>26</u> *								
2019						Natural (fish	HS			
(NEORSD)	2.84	30*				passage)	Urban runoff			
2019			26*/F*	70.0	NON	Flow regime	Physical barrier	E. coli		
(NEORSD)	2.84	<u>26</u> *				alterations	(Plum Creek Gorge)			
,							Natural sources	Dissolved		
2014 (EPA)	8.50	22*	MG^{ns}	51.5	NON	Low DO	(rheopalustrine)	oxygen		
						Habitat alterations	channelization	Iron		
						Low DO	Natural sources	Dissolved		
2014 (EPA)	4.92	24*	MG^{ns}	65.0	NON	Low DO Habitat alterations	(rheopalustrine)	oxygen		
						maditat alterations	Channelization	Iron		
						Natural	Natural sources	No water		
2014 (EPA)	2.50	20*	MGns	69.75	NON	(fish passage)	(Plum Cr. Gorge)	chemistry		
2014 (EFA)	2.30	20	MG	09.73	INOIN	Other flow regime	Urban runoff/storm			
						alterations	sewers	sampled		
						Natural	Natural sources			
2014 (EPA)	0.25	20*	MGns	69.50	NON	(fish passage)	(Plum Cr. Gorge)	E. coli		
2014 (EFA)	0.23	20	MG	09.30	INOIN	Other flow regime	Urban runoff/ storm	Lead		
						alterations	sewers			
						Low DO	HSTS			
2012						Natural	Urban runoff	E. coli		
(NEORSD)	2.90	<u>22</u> *	24*	70.75	NON	(fish passage)	Physical barrier	Dissolved		
(NEORGE)						Other flow regime	(Plum Creek Gorge)	oxygen		
						alterations	,			
						Natural	HSTS			
2012	0.30	16*	18*	64.25	NON	(fish passage)	Urban runoff	E. coli		
(NEORSD)				01.25	11011	Other flow regime	Physical barrier			
2004 (577.4)		220		74.6	27027	alterations	(Plum Creek Gorge)			
2001 (EPA)	2.8	22*		71.5	NON					
2001 (EPA)	0.01	<u>18</u> *		72	NON	37				
						Nutrient				
1997 (EPA)	2.8	18*	MG^{ns}	71.5	NON	enrichment	N/A	Fecal coliform		
		_				Organic				
						enrichment Nutrient	Small POTWs			
								Fecal coliform		
1997 (EPA)	0.1/0.2	18*	F*	70.5	NON	enrichment Organia	Unsewered areas, construction runoff.	Lead (OMZA)		
						Organic	polluted stormwater			
						enrichment Organic	Small POTWs	Dissolved		
						enrichment	(Brentwood WWTP			
1992 (EPA)	0.3	18*	F*	43.5	NON	Oxygen depletion	and Western Utility	Oxygen (chronic)		
			-			Habitat limitations	WWTP)	(chronic), Fecal coliform		
1981 (EPA)	8.5	22*		50	NON	madical infilitations	wwir)	r ecar contorm		
1581 (EFA)		18*		55.5	NON					
1981 (EPA)	0.25									

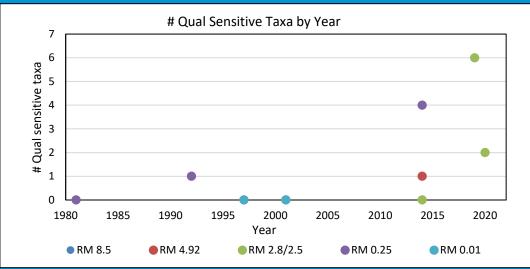

ns - nonsignificant departure from biocriteria for WWH (4 IBI or ICI units)

a - Narrative evaluation used in lieu of ICI where quantitative sampling was not done or where artificial substrates were affected by slow current velocity (E=Exceptional: G=Good: MG=Marginally good: F=Fair: P=Poor: VP=Very poor)

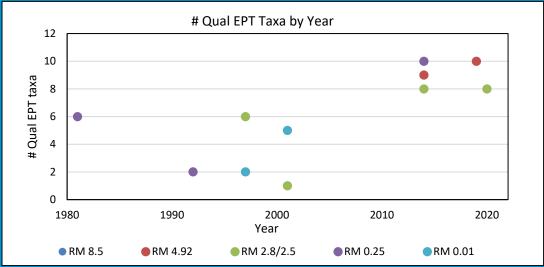

Plum Creek Water Quality Improvements

Organic Enrichment

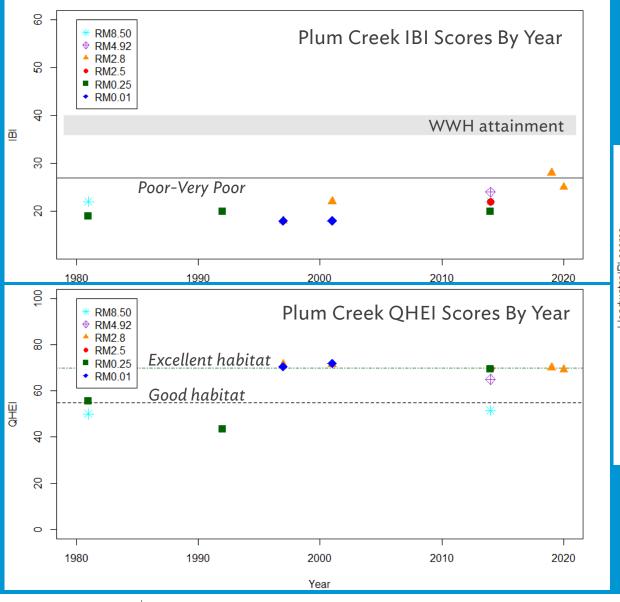

- Brentwood, Western Ohio Utility, and ODOT Park 3-39 WWTPs abandoned in 1997 with flows redirected to NEORSD SWI.
 - Eliminated 0.55+ MGD
- One remaining: Plum Creek WWTP average design flow 0.04 MGD
- Nutrient Enrichment
 - Nutrient based TMDL developed in 2001 for Plum Creek
 - 2019 & 2020 NEORSD monitoring demonstrates Plum Creek is meeting all nutrient TMDL target criteria

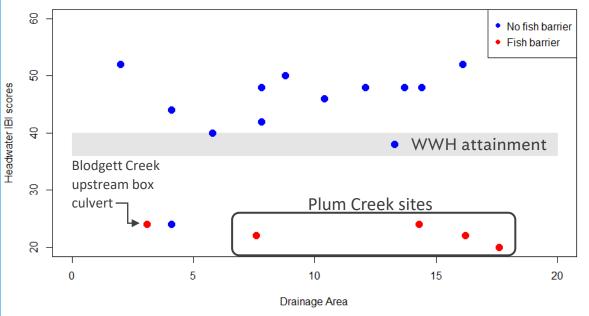


Watershed Water Quality Improvements



Plum Creek Macroinvertebrate Community Trends




Macroinvertebrate community **in attainment** 5 of last 6 assessments dating back to 2014.

Aerial dispersion in adult life form

Plum Creek Fish Community Trends

• 5 of the 6 impaired sites are upstream of fish barriers

Plum Creek Gorge

- The natural barriers at the Plum Creek
 Gorge prevent fish migration upstream
- "Potentially eligible for an aquatic life use redesignation to a lower water quality goal" (Ohio EPA 2020 Rocky River Water Quality Report).
 - Lower water quality protection for Plum Creek
 - Dissolve oxygen standards
 - Habitat goals

Proposed Project

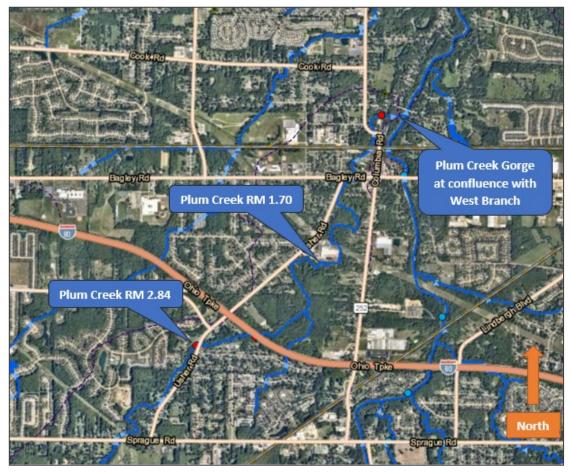
- EPA proposed in their 2020 report:
 - "A seeding of upper Plum Creek with a representative collection of headwater fish species from adjacent waters within the basin should be considered. If successful, this will contribute to ALU restoration and eliminate the need to lower its water quality goal."
- This project aligns with the Water Quality and Resource Management focus area in the NEORSD Strategic Plan: <u>Identify opportunities to drive water quality protection and</u> <u>enhancement</u>.
- We have already helped solve numerous water quality issues
 - Free fish migration is hindering its potential to achieve full biological attainment

Species Selection

- After a full literature review, a list of 9
 candidate species were selected based on:
 - Never been collected in Plum Creek
 - Found in abundance in adjacent waters to Plum Creek
 - Fish that would have likely migrated into Plum Creek
 - Ability to increase IBI score
 - Spawning and habitat preferences are available in Plum Creek
 - Are typical species found in other W. Branch headwater streams

	Table 2. IBI Metrics and effect of species introduction										
	IBI metric	Northern hogsucker	Blacknose dace	Striped shiner	Silverjaw minnow	Sand shiner	Rainbow darter	Greenside darter	Blackside darter	Fantail darter	
	Total sp.	+	+	+	+	+	+	+	+	+	
	Minnow sp.		+	+	+	+					
er of	Headwater sp.		+							+	
Number of	Sensitive sp.	+				+	+	+			
	Darter sp.						+	+	+	+	
	Simple lithophil sp.	+	+	+			+	+	+		
	Tolerants	+	-	+	+	+	+	+	+	+	
	Omnivores	+	+	+	+	+	+	+	+	+	
Percent of	Pioneering sp.	+	+	+	+	+	+	+	+	+	
Perc	Insectivores	+	-	+	+	+	+	+	+	+	
	DELTs										
Rel.	No.**	+	-	+	+	+	+	+	+	+	

Positive effect on IBI metric (+)


Negative effect on IBI metric (-)

^{*}Based on historical scores, drainage area, habitat, reproductive needs, and Best Professional Judgement

^{**}per 0.30 km, minus tolerant and hybrid species

Sampling Plan

- All source locations within the Rocky River watershed
- Goal: minimum of 200 fish/species/year into
 Plum Creek at two seed locations
- Minimum of 3 consecutive years of translocation
 - Reduces environmental variability of a bad spawning/weather year
 - Increases genetic diversity
 - Increases number of fish introduced and chance of success
- Translocate in the spring before fish spawn
- Tag every fish with a visual implant elastomer
- Perform a fall sampling to determine survivability

Plum Creek seed/translocation locations

Visual Implant Elastomer

- Tagging fish benefits:
 - Color coded by year
 - Determine long-term or multi-year survivability success
 - Determine recruitment (successful spawn) immediately upon fall sampling of Plum Creek
 - Document movement throughout the stream

Visua

tags

Year one progress

- Started sampling this spring in March, when darters prepare to spawn
- Partner agencies:
 - Brian Zimmerman, OSU Museum of Biological Diversity and Co-Author "A Naturalist's Guide to the Fishes of Ohio"
 - Ohio State University Stream & River Ecology Lab Students
 - Approval and support from:
 - Ohio EPA Ecological Assessment Section
 - ODNR Division of Wildlife
 - Cleveland Metroparks

Year one progress

Species	#
Northern hogsucker	4
Blacknose dace	500
Striped shiner	263
Silverjaw minnow	56
Sand shiner	1,170
Rainbow darter	929
Greenside darter	256
Blackside darter	3
Fantail darter	186

As of 5/13/2021, we have tagged and translocated 3,367 fish into Plum Creek

Post sampling and overall goals

- Goal: to achieve full biological attainment of Plum Creek
 - Eliminate the need for an aquatic life use redesignation to a lower water quality goal
- Enhance water quality and drive protection of Plum Creek

Site	Year assessed/ agency	River Mile	IBI	ICI	QHEI	Status	Causes	Sources	ALU WQS Exceedances	
Plum Creek	2026	2.84	46	34	69.25	FULL	N/A	N/A	E. coli	

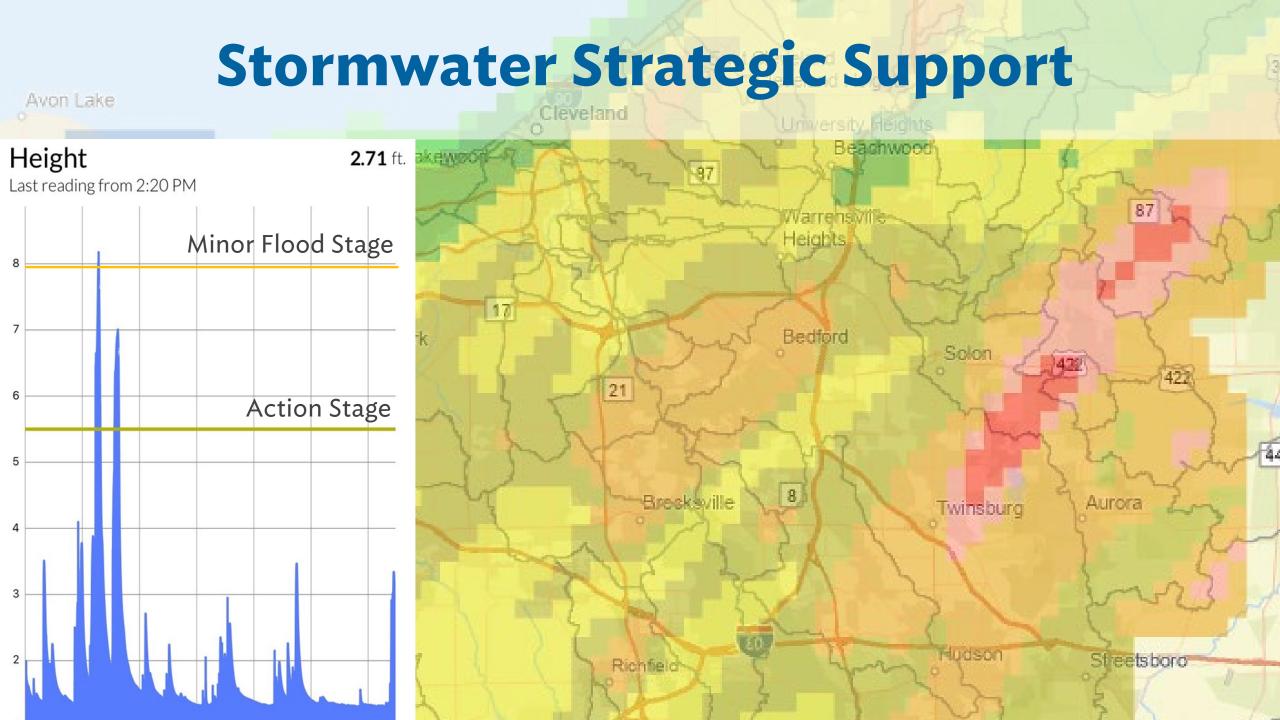
	Tab	le 7. IBI Metrics a	nd effect of species i	ntroduction	
IBI metric		9/4/2020 Bioassessment	Simulated Bioassessment with new species	Approximate metric criteria for increased score	Achievable rank 1-12 (1=best)*
	Total sp.	8(1)	17(5)	17 sp. for a 5	3
	Minnow sp.	1(1)	7(5)	7 sp. for a 5	6
Number of	Headwater sp.	0(1)	2(3)	2 sp. for a 3	1
mb	Sensitive sp.	0(1)	4(3)	4 sp. for a 3	7
Z	Darter sp.	1(1)	5(5)	3 sp. for a 3	4
	Simple lithophil sp.	1(1)	7(5)	4 sp. for a 3	5
	Tolerant sp.	59.8(1)	53.1(3)	<33% for 5 <56% for 3	2
ب	Omnivores	17.7(5)	15.5(5)	<16% for 5	-
Percent of	Pioneering sp.	69.2(1)	61.1(1)	<30% for 5 <55% for 3	9
Per	Insectivores	15.3(3)	25.1(3)	>22% for 3 >44% for 5	8
	DELTs	0.5(3)	0.4(3)	≤0.1 for 5 ≤0.30 for 3	10
Rel.	No.**	876(5)	1168(5)	>750 for 5	
IBI s	score (narrative)	22 (<i>Poor</i>)	46 (Very Good)		
Mate	ic total (matric score	1 2 2 5)	·	·	

Metric total (metric score 1, 3, or 5)

^{*}Based on historical scores, drainage area, habitat, reproductive needs, and best professional judgement

^{**}Relative number per 0.30 km, minus tolerant and hybrid species

Other impaired streams affected by fish barriers:


- Abram Creek: low head dam and Cleveland Hopkins Airport enclosure and drop structure
- Beechers Brook: Dam at Mayfield Village bank stabilization project upstream of Som Center Road
- Big Creek: John Nagy cascade
- Blodgett Creek: Box culvert under Ohio Turnpike
- Brandywine Creek: Brandywine Falls at RM 1.95
- Mill Creek upstream of Mill Creek Falls

Questions/comments?

Justin Telep
Telepj@neorsd.org
Environmental Compliance Inspector
WQIS

Using Rainfall and Monitoring Data to Support Urgent Storm Event Field Response and Post-Storm Event Data Analysis

The District has been developing and refining an Urgent Storm Response Program.

Rainfall and monitoring data are collected and analyzed to help identify and prioritize potential flooding/debris problems for field response.

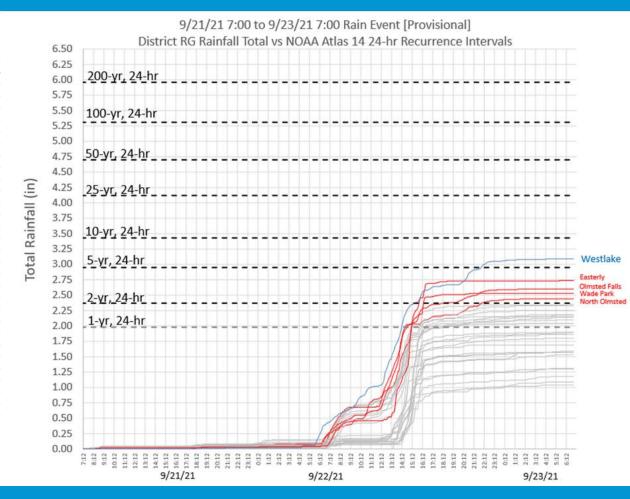
Rainfall:

 Rain Gauges, Gauge Adjusted Radar Rainfall (GARR)

Flood Stages:

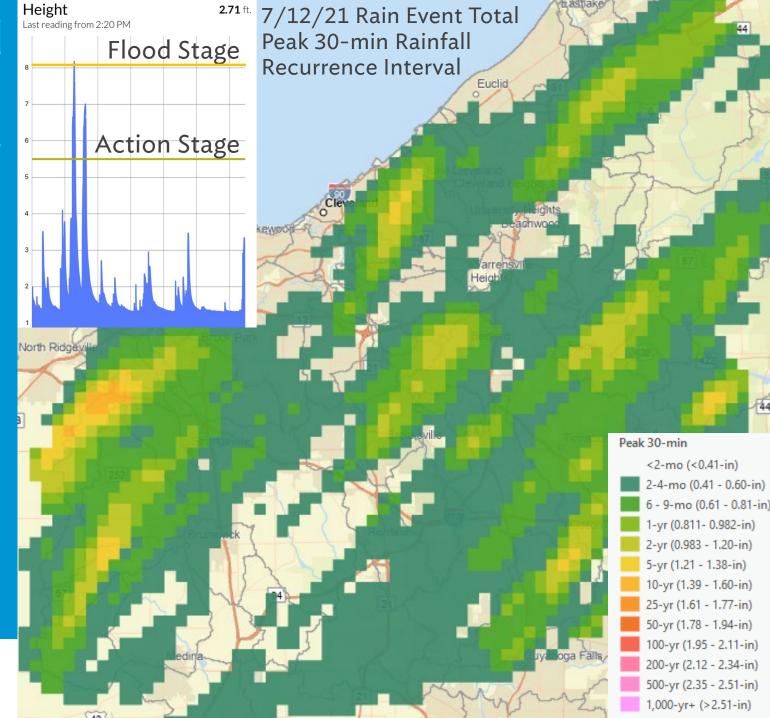
Level Sensors and Flow Monitors

Flooding/Debris/Erosion:


Trail Cams

District RG Data is Evaluated to Determine Locations Recording High Intensity or Heavy Rainfall

	Peak	Peak	Peak	Peak	Peak 1-				Peak 12-	Peak 24-	Peak 48-
	5min	10min	15min	30min	hr		Peak 3-hr		hr	hr	hr
Rain Gage	in	in	in	in	in	in	in	in	in	in	in
Beachwood .Tips (in)	2-mo	2-mo	2-mo	4-mo	9-mo	1-yr	1-yr	9-mo	6-mo	4-mo	4-mo
Brecksville.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	3-mo	3-mo	2-mo	2-mo	2-mo
Brook Park.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	3-mo	4-mo	6-mo	6-mo	2-yr	1-yr	9-mo
Dille Ave PS.Tips (in)	4-mo	4-mo	6-mo	4-mo	4-mo	1-yr	1-yr	1-yr	2-yr	1-yr	9-mo
Division Ave PS.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	2-mo	6-mo	6-mo	6-mo	1-yr	1-yr	6-mo
Easterly WWTP.Tips (in)	<2-mo	<2-mo	2-mo	2-mo	3-mo	1-yr	2-yr	2-yr	5-yr	2-yr	2-yr
Independence.Tips (in)	2-mo	<2-mo	<2-mo	2-mo	3-mo	4-mo	6-mo	6-mo	6-mo	4-mo	4-mo
Cleveland Industrial Pkwy.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	3-mo	4-mo	6-mo	1-yr	1-yr	9-mo
James Rhodes HS.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	3-mo	4-mo	4-mo	6-mo	1-yr	9-mo	6-mo
Jennings PS.Tips (in)	3-mo	3-mo	4-mo	4-mo	4-mo	1-yr	1-yr	1-yr	2-yr	1-yr	1-yr
Macedonia.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	2-mo	3-mo	2-mo	<2-mo	<2-mo	<2-mo
Maple Heights .Tips (in)	<2-mo	<2-mo	2-mo	3-mo	3-mo	6-mo	1-yr	6-mo	4-mo	4-mo	3-mo
Mary Street PS	4-mo	3-mo	4-mo	3-mo	4-mo	9-mo	1-yr	1-yr	2-yr	1-yr	9-mo
Mayfield Heights.Tips (in)	9-mo	9-mo	9-mo	1-yr	2-yr	2-yr	2-yr	1-yr	1-yr	6-mo	6-mo
Moreland Hills.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	2-mo	<2-mo	<2-mo	<2-mo	<2-mo
North Olmsted.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	6-mo	6-mo	1-yr	2-yr	2-yr	1-yr
North Royalton.Tips (in)	4-mo	3-mo	4-mo	6-mo	9-mo	9-mo	1-yr	1-yr	6-mo	6-mo	6-mo
Oakwood.Tips (in)	<2-mo	<2-mo	<2-mo	3-mo	4-mo	4-mo	4-mo	4-mo	2-mo	2-mo	2-mo
Olmsted Falls.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	4-mo	9-mo	1-yr	1-yr	2-yr	2-yr	1-yr
Parma.Tips (in)	2-mo	<2-mo	<2-mo	3-mo	3-mo	4-mo	6-mo	6-mo	1-yr	6-mo	6-mo
Richfield.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo	<2-mo
Shaker Heights.Tips (in)	4-mo	3-mo	3-mo	2-mo	2-mo	6-mo	1-yr	9-mo	6-mo	4-mo	4-mo
South Euclid.Tips (in)	3-mo	3-mo	4-mo	6-mo	1-yr	2-yr	2-yr	2-yr	1-yr	1-yr	9-mo
Southerly WWTC.Tips (in)	4-mo	4-mo	6-mo	6-mo	4-mo	9-mo	1-yr	1-yr	6-mo	6-mo	4-mo
Strongsville C WWTP.Tips (in)	<2-mo	<2-mo	<2-mo	3-mo	4-mo	6-mo	6-mo	6-mo	2-yr	1-yr	1-yr
Strongsville Foltz.Tips (in)	<2-mo	<2-mo	<2-mo	2-mo	3-mo	6-mo	6-mo	9-mo	1-yr	1-yr	9-mo
University Hts	1-yr	9-mo	9-mo	9-mo	1-yr	2-yr	2-yr	2-yr	1-yr	1-yr	9-mo
Wade Park.Tips (in)	6-mo	9-mo	9-mo	9-mo	9-mo	2-yr	2-yr	2-yr	2-yr	2-yr	1-yr
Westlake.Tips (in)	<2-mo	<2-mo	<2-mo	<2-mo	2-mo	6-mo	1-yr	1-yr	5-yr	5-yr	2-yr



GARR Data is Evaluated to Support Additional Rainfall Spatial Analysis

The District reviews GARR Data for a range of rainfall durations to identify recurrence intervals.

Pockets of High Intensity or Heavy Rainfall are evaluated further using other data sources.

For larger storms, the District collects Radar Rainfall videos to better understand the overall storm event (formation, direction, speed, intensity, coverage).

Stream Monitors are Reviewed for Evidence of Potential Flooding to Support Field Response

- The District is working to assign the four NWSequivalent Flood Stages to any District or USGS monitor within the SWSA:
 - Action
 - Minor Flooding
 - Moderate
 Flooding
 - Major Flooding

	7/12/21 Data		Current		Peak NWS				
		Current	NWS Flood	Peak	Flood	Action	Minor	Moderate	Major
Type ~	Stream Monitor	Stage FT ~	Status FT -	Stage FT ~	Status FT ~	Stage FT ~	Flood FT ~	Flood FT ~	Flood FT ~
туре		FI		FI		FI	FI	FI	FI
USGS	Big Creek at Cleveland	3.5	Below Action	7.6	Below Action	9	11	12	13
			Below		Below				
USGS	Brandywine Creek near Macedonia	3.6	Action	6.7	Action	12	13	14	15
			Below		Below				
USGS	Chagrin River at Willoughby	5.6	Action	7.1	Action	9	12	14	16
			Below		Below				
USGS	Cuyahoga River at Hiram Rapids	2.9	Action	2.9	Action	5	7	8	12
			Below		Below				
USGS	Cuyahoga River at Independence	7.6	Action	13.0	Action	14	17	18.5	21
			Below		Below				
USGS	Cuyahoga River at Jaite	5.6	Action	9.7	Action	11	n/a	n/a	n/a
			Below		Below		40.5	4.5	4.5
USGS	Cuayhoga River at Old Portage	5.0	Action	8.6	Action	9	10.5	13	18
USGS	Indian Cook and Manadasia	4.7	Below	6.3	Below	0.5		10	10
0303	Indian Creek near Macedonia	1.7	Action	6.3	Action	8.5	9.5	10	12
USGS	Mill Creek at Garfield Pkwy at Garfield Heights	1.7	Below Action	5.1	Below Action	7	7.5	10	12
0000	initi dicek at dameid i kwy at dameid neights	2.7	Action	3.1	Action	,	7.3	10	
USGS	Plum Creek near Olmsted Falls	7.8	Action	7.9	Action	5.5	8	11	14
			Below		Below				
USGS	Rocky River near Berea	9.3	Action	10.8	Action	11.5	18	20	22
			Below		Below				
USGS	Tinkers Creek at Bedford	3.7	Action	5.9	Action	7	9.5	12	n/a
USGS	West Branch Rocky River at West View	13.3	Action	14.3	Action	13	17.5	21	25
			Below		Below				
USGS	West Creek at Ridgewood Road at Parma	5.0	Action	7.7	Action	8	10	14	16

Trail Cams are Reviewed to Identify Potential Stormwater Issues for Field Response

Airport Debris Rack

Lakeview Dam

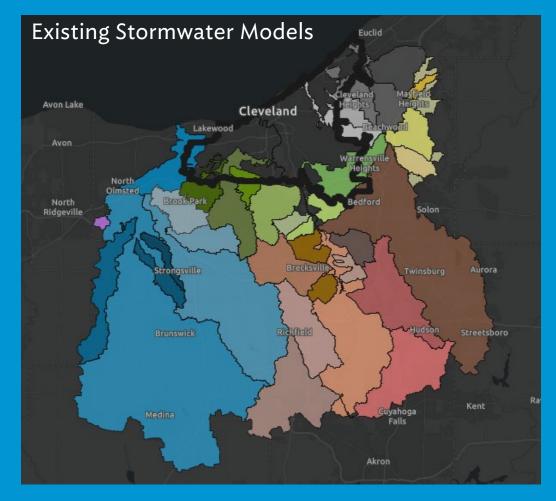
Post-Storm Event Analysis:

Objective: Use Collected Data to Better Understand What Happened and Why to Support Planned Projects and Future Urgent Storm Responses

Data Sources:

- District Rain Gauge Data
- GARR Rainfall Data
- Monitoring Data
- Sediment/Debris Accumulation
- Field Observations
- Customer/Media Reports

Data Analysis:


- Rainfall Statistics (e.g., 10-year 2-hr)
- Comparing H/H Model-Predicted Flooding to Actual Flooding
- Comparing Historical Storms for Potential Correlations (Flooding, Debris Accumulation)

Extending the RSMP Stormwater Models to Support Resolving Local Flooding Issues

The District currently manages over 40 stormwater hydrologic & hydraulic models across the SWSA to reflect existing conditions and recommended alternatives.

Upon request, the District stormwater models can be provided to support local stormwater evaluations.

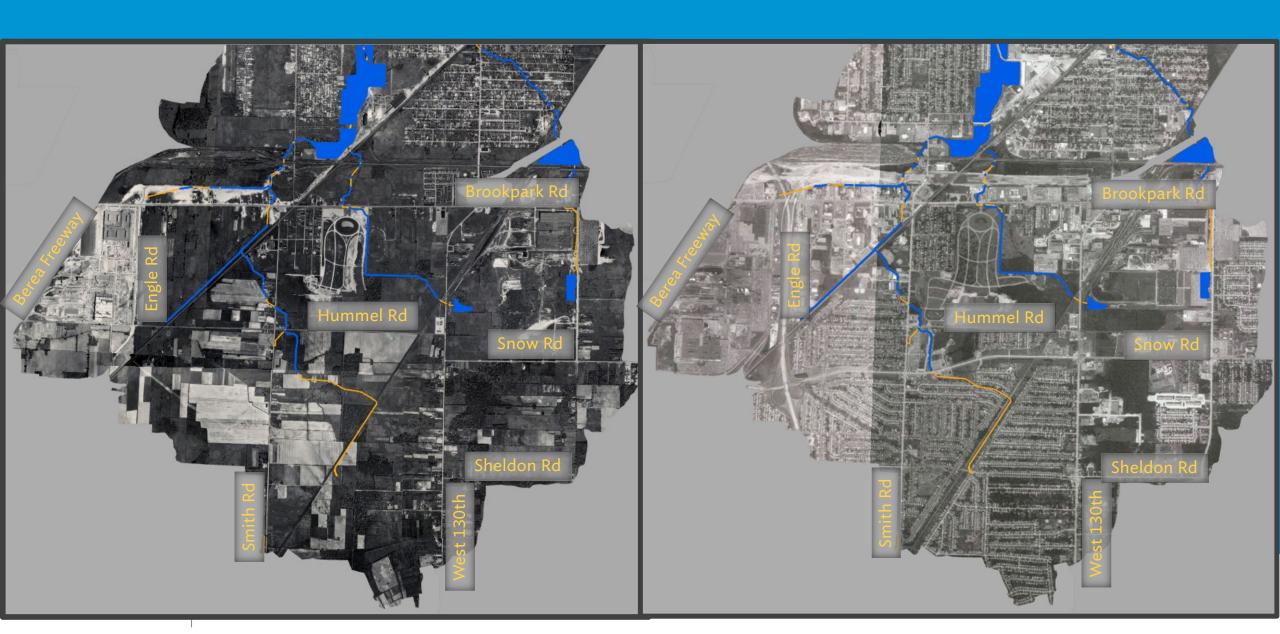
At times, the District assists with evaluating local flooding issues that may provide benefit along the RSS.

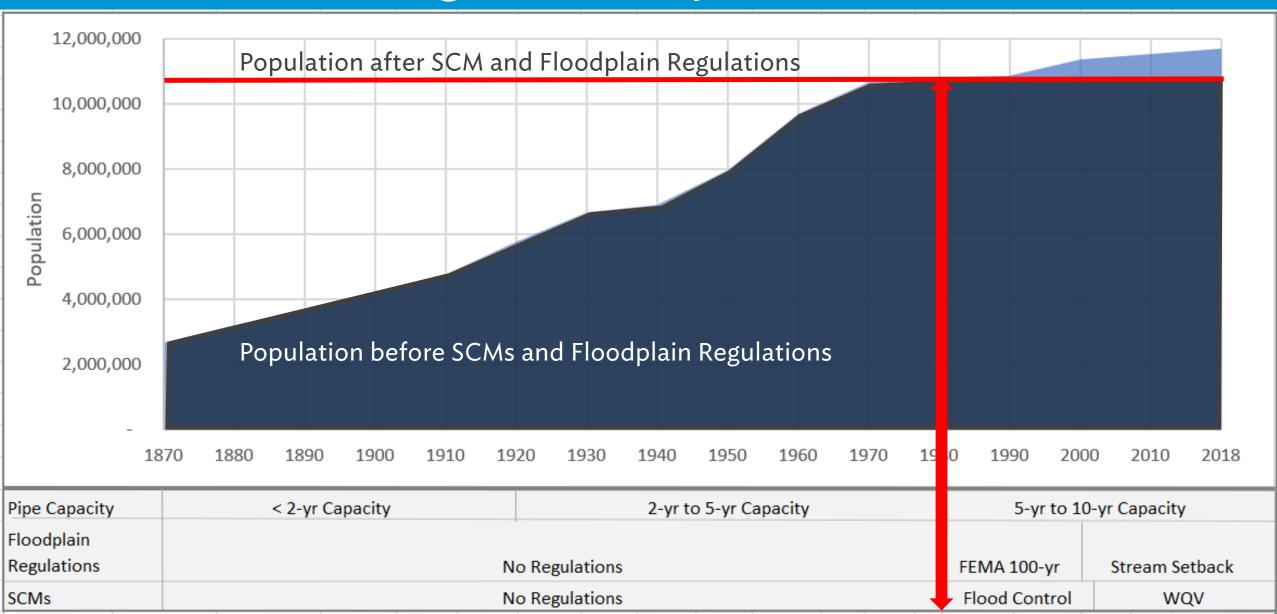
Brook Park: Kolleda "Ditch" Tributary Flooding

The City of Brook Park requested District assistance to mitigate local flooding along Kolleda Ditch.

The City of Brook Park was heavily developed during the post World War II era (1950s and 60s). The Kolleda "Ditch" drainage area is approximately 4 square miles and includes over 2-miles of impervious area (53% impervious).

Very few stormwater control measures (SCMs) exist to manage stormwater runoff. Most of the streams have been culverted.


Existing storm sewers are primarily from their original construction (1950s & 60s), are common trench (MH separated), undersized compared to today's standards, and near the end of their useful life.

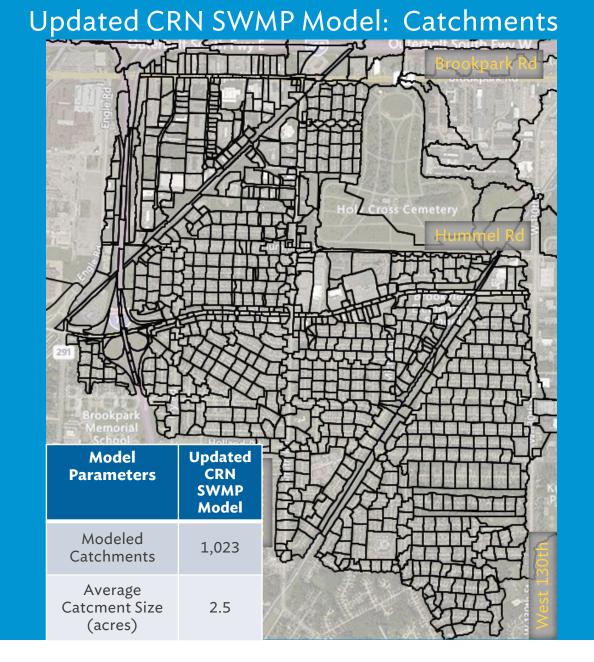


Brook Park: 1951

Brook Park: 1979

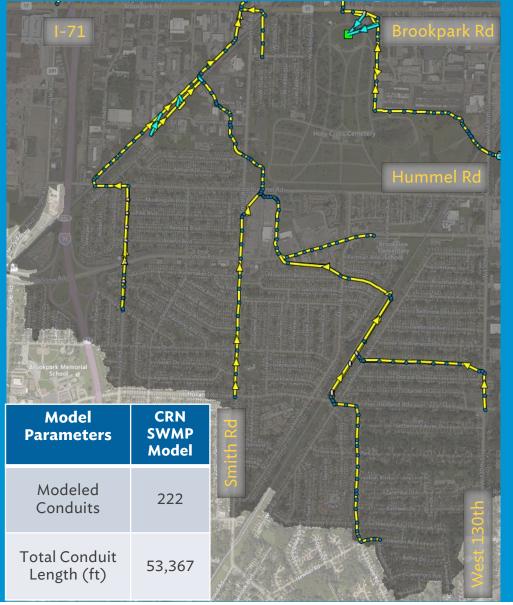
Ohio's Population and Stormwater Management Regulations by Decade

Stormwater Model Updates to Support Local Flooding Evaluation

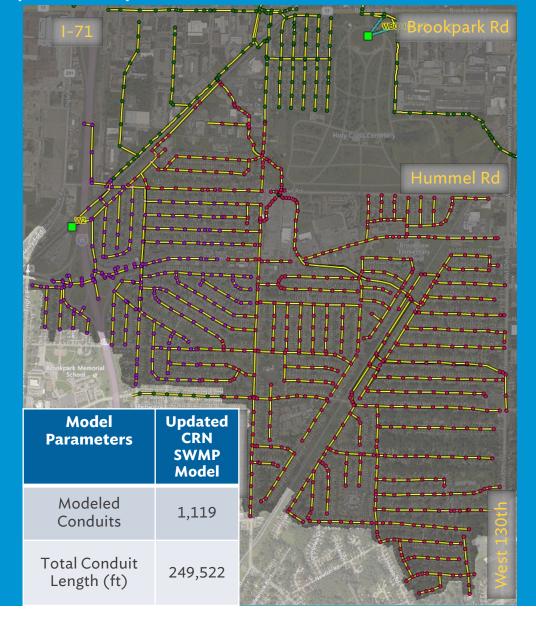

The CRN SWMP model was extended from the RSS into the Local Storm Sewer System (LSS). Hydrologic catchments were also refined as part of the model extension.

The model extension allows for:

- Better understanding of the LSS flooding problems
- Potential RSS influence on LSS flooding problems
- Identifying potential opportunities to mitigate flooding at the local level
- Identifying potential RSS benefit from local solutions.


Model Parameters	CRN SWMP Model	Updated CRN SWMP Model (LSS Extensions)
Modeled Catchments	76	1,023
Average Catcment Size (acres)	33	2.5
Modeled Conduits	222	1,119
Total Conduit Length (feet)	53,367	249,522

CRN SWMP Model: Catchments Model **CRN SWMP Parameters** Model Modeled 76 Catchments Modeled **Catcment Size** 33 (acres)



CRN SWMP Hydraulic Model

Updated Hydraulic Model with LSS Extensions

Storage Alternatives Being Consider

Storage Type	Application	Limitations
Conventional: In-line Basin	Enough elevation difference to allow ponding	Flat areas with upstream connections
Conventional: Off-line Basin	Where stormwater can be diverted, storage, and released at a different location	Limited areas within built-out communities; streams with little to no floodplain width.
Decentralized: Underground Storage, Bioswales	High impervious areas, locations with limited space, Public ROW, flat areas without conventional storage opportunities	Some locations will require private property owner buy-in; Increases the number of SCMs requiring O&M

Questions

Rocky River Stormwater Master Plan

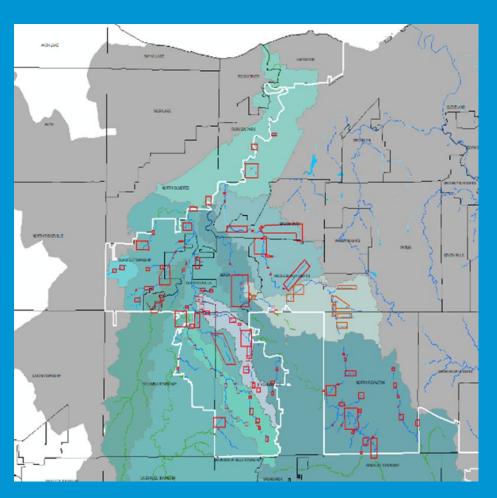
Stormwater Master Planning as of 10/1/2021

Cuyahoga River South

Cuyahoga River North

Rocky River

Completion Date: November 2020


Chagrin River / Lake Erie Tribs

Completion Date: November 2021

Stormwater Master Plan Problem Area Determination

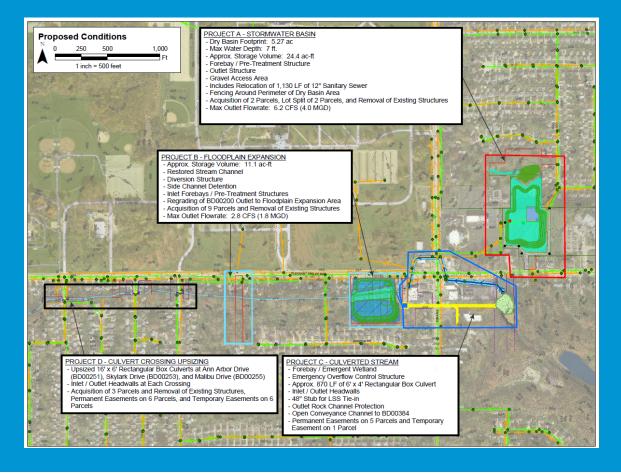


Watershed	Problem Areas	Stand-alone Projects	Estimate Costs	
Abram Creek	7	3	\$43,193,000	
Baker Creek	7	14	\$21,848,000	
Baldwin Creek	10	5	\$48,593,000	
Blodgett Creek	7	5	\$17,637,000	
French Creek	2	0	\$ 1,035,000	
Plum Creek	3	1	\$ 8,639,000	
Rocky River EB	16	11	\$81,078,000	
Rocky River MB	3	1	\$ 3,502,000	
Rocky River WB	16	10	\$49,766,000	
Totals	71	50	\$275,291,000	

Rocky River Stormwater Master Plan Design & Construction Phase

Projects initiated based upon the Rocky River Stormwater Master Plan:

- Abram Creek Detention Basins Near Big Creek Parkway Middleburg Heights
- Cleveland Hopkins Airport Debris Rack Replacement Cleveland
- Sheldon Road Bridge Replacement Brook Park & Middleburg Heights
- Route 82 Culvert Replacement Strongsville Completed
- Baldwin Creek Relief Storm Sewer at Stormes Drive -Parma


Rocky River Stormwater Master Plan Advanced Stormwater Planning

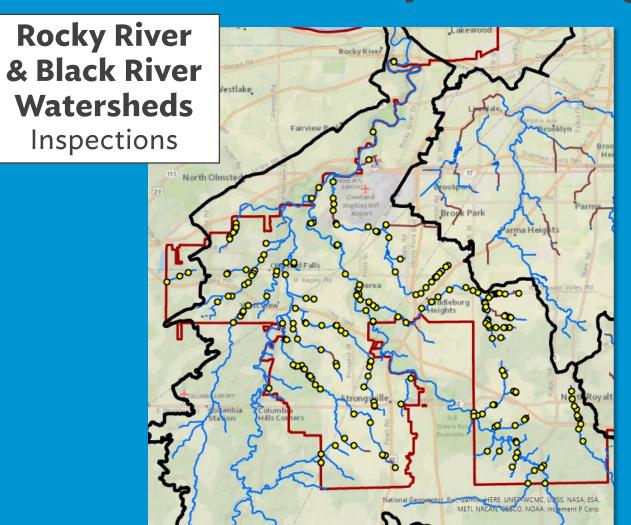
Goal to ready projects for full design

- Projects that require additional information to understand full RSS impacts
- Are Cost Prohibitive w/o phasing
- Breakdown of complex, preferred alternatives into manageable projects
- Acquisition/Easement procurement
- Coordination considerations with outside stakeholders
- Current ASP contract started in 2020; opening RFQ for 2nd contract this fall.

Rocky River Stormwater Master Plan Advanced Stormwater Planning Problem Area BDPA_06: York & West Pleasant Valley Roads

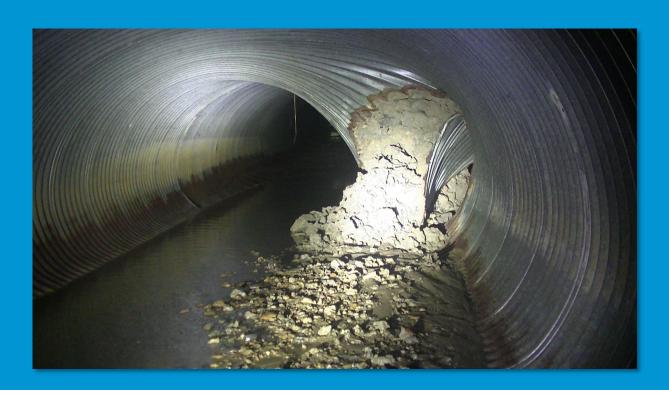
Stormwater Master Plan Data Sharing with Community Members

- Culverted Stream CCTV/PACP Reports
- Spherical Imagery of Open Streams
- Inventory of RSS Crossings
- RSS Asset Inspection records


Questions

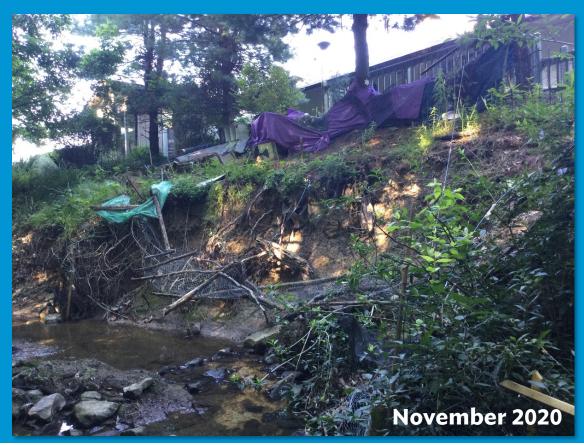
Stormwater Inspection & Maintenance (SWIM)

- Inspection and Maintenance Update
- SWIM Demolition Services


Completed SWIM Inspections 01/2021-09/2021

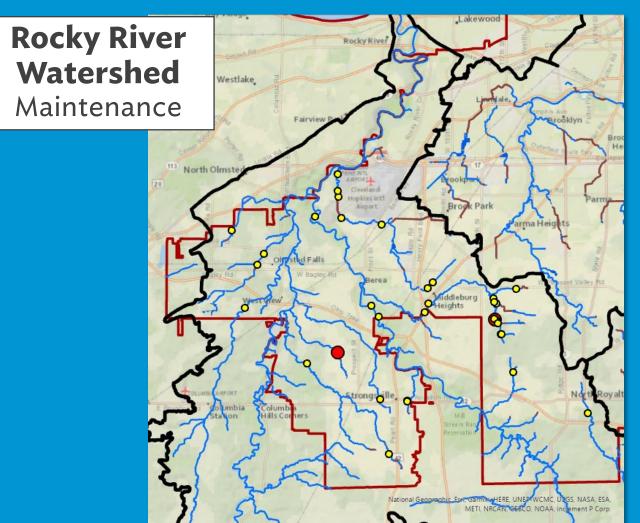
257 Total Inspections

- 177 SWIM Inspections
- 80 Responsible Party Benchmark Inspections

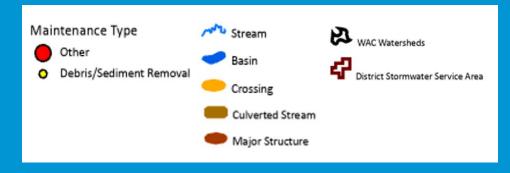


BD00296, Baldwin Creek, North Royalton Pipe has failed at location of local storm tap-in, resulting in backyard sinkhole. Culvert also exhibits section loss and deformations.

BL00211, Blodgett Creek, Strongsville Home is 12' from TOB. Significant slough occurred, SWIM installed bank pins and will monitor biannually.



SWIM 2021 Maintenance Program


SWIM

2021 Maintenance Program

Maintenance Projects 01/2021 - 09/2021

Project Type	Projects (Count)	Debris Removed (CY)	Sediment Removed (CY)		
Sediment & Debris	42	1,343	0		
Other	3	527	0		
Total	45	1,870	0		

SWIM2021 Maintenance Program

BK00188, Baker Creek, Strongsville - 4 Cubic Yards of debris removed that had accumulated on a local utility lateral.

SWIM Demolition Services Update

SWIMDemolition Services Update

Anticipated Expenditure: \$500,000 **Estimated Contract Period: 2 years**

Purpose: The purpose of this contract is to support the implementation of the Regional Stormwater Management Program through the demolition of structures on properties acquired for the completion of water resource projects along the Regional Stormwater System.

Demolition at Forest Overlook Drive, Seven Hills



Questions

Baldwin Creek Relief Culvert at Stormes Drive City of Parma

Project Goals:

Reduce flood risk

Increase conveyance with new culvert

Consultant: EMH&T

Estimated Construction: \$1.7M

Construction NTP: 1st Qrt 2022

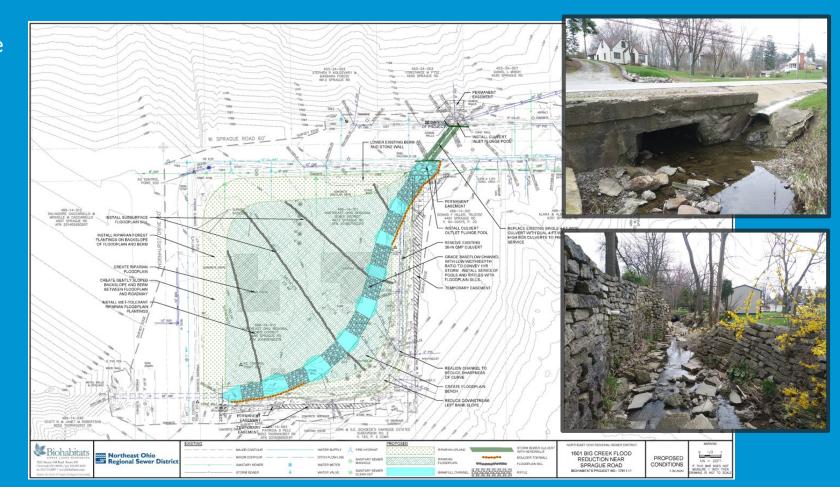
Facts to Note:

- Almost all work is being performed in public
 R/W
- Future basin expansion project will continue to reduce flood risk in this neighborhood

Big Creek Flood Reduction near Sprague Road Cities of North Royalton and Parma

Project Goals:

- Upsize Sprague Road crossing to reduce roadway flooding
- Increase storage through floodplain expansion
- Daylight existing culvert


Consultant: Biohabitats, Inc.

Estimated Construction: \$940K

Construction NTP: early 2022

Facts to Note:

- Fee simple land acquisition of 2 parcels
- Easements necessary on 4 parcels

Pepper Luce Creek Culvert Replacement & Rehabilitation at Gates Mills Boulevard City of Pepper Pike

Project Goals:

- Rehabilitate and replace failing culverts
- Enlarge a detention basin to reduce flood risks to Gates Mills Blvd

Consultant: Jacobs Engineering Group

Estimated Construction: \$2.2M

Construction NTP: 2nd Qrt 2022

Facts to Note:

City of Pepper Pike is utilizing
 Community Cost Share for the
 rehabilitation of the upstream culvert

Mill Creek Culverted Streams Rehabilitation City of Garfield Heights

Project Goals:

 Rehabilitate several culverted stream assets in the Mill Creek Subwatershed

Consultant: Brown and Caldwell **Estimated Construction:** \$1.5M **Construction NTP:** early 2023

Facts to Note:

 Daylighting alternative of MC00058 to be evaluated as alternative

Culverted Streams Rehabilitation District-wide

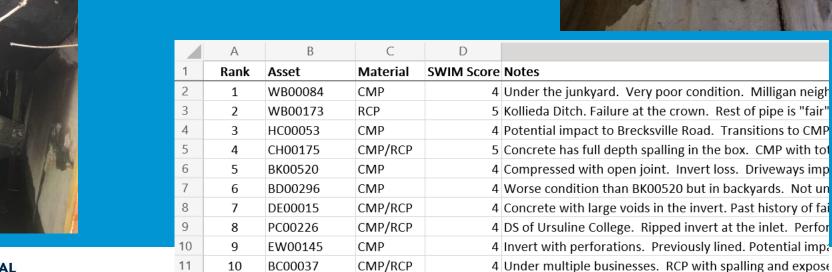
Goals:

Rehabilitate/replace culverted streams to reduce risk of failure

12

13

11


12

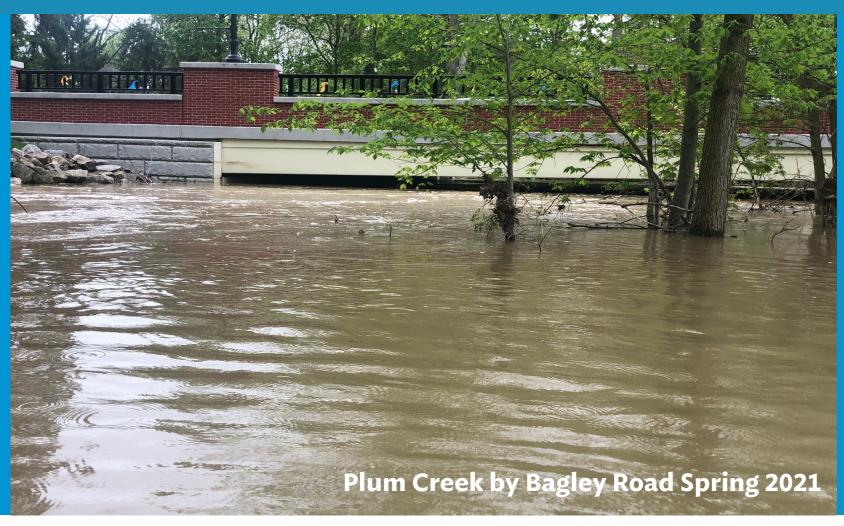
DF00017

DW00091

- Daylight streams currently in culverts, if feasible, to open streams to floodplains and increase water quality
- Budget ~\$1.5M annually for rehab of these assets

RCP

RCP


4 Holes in the concrete invert, missing brick, infiltration rule

4 Sagging crown. Under driveway/local roadway.

REGIONAL STORMWATER MANAGEMENT

Questions

Rocky River Tributary Stabilization and Re-Alignment Along Ridge Road in City of North Royalton

Substantial Completion Anticipated September 2021

Contract Amount: \$438,471.10

Lineal Feet of Stream Work: 323'

Pepper Luce Creek Stabilization Near Lander Road

Substantial Completion Anticipated September 2021

Contract Amount: \$593,034.90

Lineal Feet of Stream Work: 575'

Questions

WTL Contact

Meiring Borcherds
216.881.6600 Ext. 6159
borcherdsm@neorsd.org

Stormwater Program: Community Resources

http://www.neorsd.org/communitystormwaterresources.php

